Spectacular garage-top observatory
Authored by Humanoido
Humanoido worked eighteen years developing, constructing, and perfecting performance of this fantastic award winning, and claimed by many to be far ahead of its time, computerized rooftop observatory
Ahead of its time: the observatory was far ahead of its time in the 1970s with many new inventions not commercially available at that time, such as a microcomputer, computerized mirror grinding machine, video image processor machine, special 40-inch telescope with servo figured primary, talking and listening speech observatory system, optoelectronics interface, OPTICS language, observatory robot droid, Thermodynamic Equalizer, the first GOTO celestial objects system, observatory HVAC, virtual cooling CCD, interlocking dome and track, the first cyber space robotic telescope, large lenseless Schmidt, infinite rate VFO...
Telescopes
(1) 30mm Refractor
(1) 4.25-inch diameter RFT Space Telescope
(1) 4.25-inch f/11 Newtonian Reflector
(1) 8-inch f/2 Lensless Schmidt Camera
(2) 8-inch f/6 Newtonian
(2) 12.5-inch f6.3 Newtonian Reflector
(1) 40-inch Newtonian with plate glass primary
(2) 50-inch Newtonian (aluminized polymer primary)
The mirror mount was made from plywood with 144 computer controlled servos to figure the telescope objective shape during observing through machine induced flexure.
The mount for the massive telescope was disguised by building it into an outdoor backyard storage shed. The completed 40-inch telescope was valued at 1.2 million dollars.
Telescope Systems Design Program
A computer program was written on the 1802 microcomputer to design the 40-inch reflector telescope and diagonal. The program also determined the height to the ocular and many other parameters. Using the program, it was decided to figure the main objective electronically during observing by the use of homemade servos. Whenever a new computer was added, the program was rewritten and updated to the new language.
The observatory robot droid was programmed to assist during telescope operations. It could speak, understand speech, move around, detect smoke, and see in total darkness. |
To help grind and polish such large heavy telescope mirrors, a mirror grinding machine was computer designed and built using the 1802 computer. Built from scavenged parts, it included a 6-foot long solid wood house door, a tangent arm from a house beam, belts and pulleys from the surplus center, ball bearings from slingshot steel balls, timing cycles was on the embedded kitchen clock, and the motor from the family washing machine produced the reciprocating power. It could handle small eyepiece lenses on specific spindles or primary mirrors up to 40-inches in diameter at the core platform.
Mirror Grinding Room
For housing the mirror grinding machine in pristine conditions, a special mirror grinding clean room was constructed on the south wing.
Photographic Darkroom
Adjacent was a photographic darkroom for developing film, spectroscopic emulsions, designing developers, and printing images with a photographic enlarger, print paper and mixed chemicals.
Observatory Dome
The author designed and built the telescope dome with trigonometry and calculus. A double size garage was built onto the house as a work room. Construction first proceeded on the dome outside in warm weather, then was moved inside the new garage when weather turned cold and it snowed. A propane heater helped extend the project to 3 months. Humanoido built the two ton 3-meter observatory telescope dome with bi-parting shutter doors using metal garage track wheels, during his lunch breaks and in his spare time after work hours. Upon completion, small diameter long steel rod/pipes were used as rollers to transport the dome out of the garage in preparation of hoisting up onto the roof. The rollers worked so well that the dome started to pick up speed moving down the driveway. Running to the opposite side forced the dome from moving out into the line of street traffic! The dome was valued at $50,000 by astronomical sources.
Dome Drive
A special order expensive industrial AC motor was phase wired and set up with a machined keyed drive wheel in the ratio of 144:1 to move a precision welded circular steel track 360 continuous degrees. A controller was computer designed and built with electronics and high powered electromechanical relays and an HVAC unit for forward and reverse direction ability.
Precision Dome Support
Large custom support trucks were constructed from 1/4-inch welded steel plate with adjustable steel wheels. Four such units were equidistant placed and contained 32,000 pound lockdown chains each.
The Optoelectronic Interface
To send signals across the observatory, Humanoido invented the the world's first astronomical Optoelectronic Interface. Light waves were sent across rooms to communicate with the observatory computer and control the HVAC system.
Optics Language
The author invented a new computer language named OPTICS that could communicate across space and time with invisible optical components at the speed of light. This eliminated the need for bulky wires and cables and prevented any power line fluctuations and HVAC voltage spikes from getting into the system.
Telescope Pier
The massive solid stationary telescope pier began 9-feet underground and extended upwards 22 feet high. With an 8-inch diameter cast pipe in the center, it weighed 28,000 pounds and was constructed from steel, cement, rebar, and wire mesh. With thousands of pounds PSI, it was poured in three massive interlocking sections with thick 3/4" plywood forms reinforced with multiple long threaded rod bolts. Engineers estimated the telescope monolithic pier would survive a nuclear blast.
Computers
As the Observatory evolved, at least five computers were added to the systems. At first, the homebuilt 1802 computer was the mainstay for power programs to design the telescopes and do complex engineering. A Z80 was in charge of mobile robotic control and the Intel PC became part of the telescope sky celestial object positioning system. The 6502 did image and data processing and hosted the VIP Video Image Processor. The model I level II was allocated to the first AI speech recognition, speech synthesis and HVAC (High Voltage AC Controller) optoelectronic interfacing. Additional systems controlled dome rotation, thermal equalization, and a variable frequency oscillator for guiding and tracking stellar objects, plus the telescope was upgraded for computer control and slow motion in both right ascension and declination.
Science Library
The finished observatory included one of the finest scientific and astronomical libraries in the entire state, with rows 40-feet long and thousands of books from floor to ceiling. Many books were procured from a local library that closed. Also many university level books were contributed. Sections were included for astronomy, astrophotography, photography, chemistry, rocketry, space exploration, physics, optics, space time relativity, history, economics, music, robots, electronics, construction, carpentry, electrical wiring, plumbing, aviation, art, design, engineering, crafts & lore, materials, gardening, software, programming, artificial intelligence, SWL, ham radio, thermodynamics, atomic & nuclear, statistics, mathematics up to differential equations, and computers. It also include the first 35 stories written by the author for publication.
Publications
The observatory details, observations, etc. were written up and published in newspapers, carried nationally by News AP Wirephoto, news journals, books, Observatory Techniques Magazine, Sky & Telescope and other astro publications.
Laboratory
A large laboratory equipment bench had sections for robotics, cybernetics, computers, software programming, optics, droid construction, image processing, and inventions. It had a vast network of storage to hold computer drives and various observatory equipment.
Room Construction
Upgraded microcomputer in the observatory |
Special Garage
The 2.5X garage was reinforced to support the weight of the entire observatory complex with a custom forged beam of multiple sandwiched massive wood lengths with layered steel plate running the entire length of the garage. It led to two vertical posts sunk into poured concrete footings four feet deep. To provide weather and temperature separation, the garage was fully insulated and sheet-rocked. Built with extra-large service doors, the car was kept outside, and half the garage was used for constructing the large 40-inch telescope. The garage was heated by propane and was instrumental in dome construction during cold winter months.
Observatory with a Voice
The observatory could talk and recognize speech. Experiments were conducted with chips that included VOTRAX, RS, and the SPO256. By giving it commands, the dome could rotate to match observing the stars and celestial objects. There was AI behind the voice, which at times on the main floor would suddenly start talking out loud to itself. One time, it was startling to think a stranger was lurking somewhere upstairs in the observatory, but it was only the AI that auto-reset and started talking to itself!
Telescope
The telescope was the first high tech GOTO system that could find celestial objects using a telescope axis drive, variable frequency oscillator, encoders, software and a computer. Adjustments were made during astro imaging using both R.A. and Dec. slow motion controls. The system was implemented on planets such as Venus, Mars and Jupiter, and could track the Moon using Lunar rate. For deep sky, sidereal rate was highly accurate. Also implemented was a solar rate and an adjustable rate for comets, satellites and asteroids.
Cameras
A variety of custom astro imaging cameras were used, including CCTV, SLR, super cooled homebuilt dry ice camera, a virtual cooling CCD, and ST-4 Peltier cooled imager and guider.
A microcomputer designed and built by the author was used extensively at the observatory. This was created before any microcomputers were on the market. The computer was built around the RCACDP1802MPU chip and was upgraded to run Tom Pittman Tiny BASIC in 4K. To have more power, it was expanded with more memory, an ASCII keyboard, tape recording and loading machine, extended power supply, meter, TV monitor made with a 5" SONY portable TV, and RF Video Modulator. The author lectured at universities regarding the design of his first new microcomputer and was published in several computer magazines.
Cybernetics Lab - Robot Droid - Cyber Space Telescope
Many inventions came from the Observatory Cybernetics Lab. The author built a mobile AI robot droid based on the Z80 chip to assist observatory operations by providing the correct observing oculars, speaking timing routines for astro imaging in total darkness, and keeping track of technical information for observing, dome rotation, and special astro missions. The robot was taken to Albuquerque NM at the World's 1st Personal Robotic Conference (IPRC) where it received the red ribbon. Other inventions included a robotics hand, machine video image processor, AI creations, and robot telescopes. This led to the world's first Cyber Space Robotic Telescope where people from across the world could dial up the telescope by internet and take photos of sky M-objects and selected objects using a choice of CCD cameras. It included star maps and an online data accessible astro computer.
Thermodynamic Equalizer TE
The TE was an electronic machine invented and constructed by the author. Using thermoelectric sensors and comparator circuits, it equalized the temperature of indoors and outdoors to keep the telescope and dome room at thermal equilibrium resulting in the finest performances.
VIP Video Image Processor
A six-foot-long machine was invented that could take negatives and convert to digital images and do computer color image processing. The red machine was built from plywood, an enlarger lens, a homemade servo, screw focus assembly, and a microcomputer with special interface. This machine helped discover radial spokes in the colorful rings around planet Saturn and was one of the first computer image processing systems applied to astronomical imaging.
Guest Visitors
The observatory had many guest visitors. Some were visiting astronomers from across the world, and others were visiting schools. Perhaps the most valued and cherished visit was from the Great Grandmother, who somehow made it up the two flights of steps to see the observatory and telescope in operation. She is quoted as saying, "I have seen the future!"
Discoveries & Inventions
The observatory helped to make thousands of inventions and important discoveries. This is the short list.
* Found new star in M27, helped position the HST Hubble Space Telescope
* New Comet understanding of formation and evolution
* New Cometary graphics
* New astrophotographic techniques
* New maps - discovered and tracked Mars dust storms
* Discovered radial spokes within the rings of Saturn
* Discovered Virtual CCD cooling
* Discovered new imaging techniques
* Discovered new ways to build large telescopes
* New optical experiments
* Invented anti-light device
* Cyber Space Robotic Telescope
* Special "figuring the primary objective during observing" method
* Discovered telescope Amping & implemented their new systems
* Discovered how to reduce EFL by electronic techniques
History, Demise
The observatory was extremely successful and active up until the time someone tore down the observatory and crushed the dome. At the same time, another person took a hammer to the 40-inch telescope glass, thus destroying the 1.2 million dollar telescope. Only the 28,000 pound steel/concrete pier remains to this day, an immovable monument to the observatory history.
Rebirth
Nearly 2 decades transpired. Suddenly the timing was right to "take back the observatory" so to speak. At the Pacific Ocean Volcanic Archipelagos, a replacement futuristic new observatory was born, literally hundreds of thousands of times more powerful than the original, and ultimately equipped with the largest and most powerful amped telescopes in the world.